Review: Sequence Convergence - 10/5/16

1 Facts about Converging Sequences

A monotone, bounded sequence always converges.
An unbounded sequence does not converge.
Another way of saying this is: Convergent sequences are bounded.

2 Definition of Convergence

Definition 2.0.1 The limit of a sequence $\left\{a_{n}\right\}$ is L if for every $\varepsilon>0$ there exists a natural number N such that for all $n \geq N$,

$$
\left|a_{n}-L\right|<\varepsilon .
$$

What does this mean? First, I'm picking a number $\varepsilon>0$, and I want to look at a little window around L of size ε. (See picture). The sequence converges if I can find a number N such that all terms after a_{N} are inside that window.

3 Solving Examples

Example 3.0.2 Prove that $\lim _{n \rightarrow \infty} \frac{1}{n}=0$. We need to show that there is N such that $\left|\frac{1}{N}-0\right|<\varepsilon$. Since $\frac{1}{N}$ will always be positive, I can take off the absolute values to get $\frac{1}{N}<\varepsilon$, so $\frac{1}{\varepsilon}<N$. This means that as long as N is bigger than $\frac{1}{\varepsilon}$, a_{N} will be in my ε window around L.

Example 3.0.3 Prove that $\left\{\frac{\sin (n)}{n}\right\}_{n=1}^{\infty}$ converges to 0 . We need to solve for N in $\left|\frac{\sin (N)}{N}-0\right|<\varepsilon$. We can take the absolute value off of the $\frac{1}{N}$ since that will always be positive, but sin changes between positive and negative, so we need to leave the absolute value on that. So we have $\frac{1}{N}|\sin (N)|<\varepsilon$, so $\frac{1}{\varepsilon}|\sin (N)|<N$. But remember that \sin is bounded, i.e. $|\sin (N)| \leq 1$, so we can take $\frac{1}{\varepsilon}|\sin (N)| \leq$ $\frac{1}{\varepsilon} \cdot 1<N$. This just means that if we take $N>\frac{1}{\varepsilon}$, it will certainly also be bigger than $\frac{1}{\varepsilon}|\sin (N)|$, which is what we need. Thus $\lim _{n \rightarrow \infty} \frac{\sin (n)}{n}=0$.

Practice Problems

1. Prove that $\lim _{n \rightarrow \infty} \frac{3 n+1}{n-1}=3$.
2. Prove that $\lim _{n \rightarrow \infty} \frac{3 n+1}{n-1} \neq 0$.
3. Prove that $\lim _{n \rightarrow \infty} \ln \left(1+\frac{1}{n}\right)=0$.

Solutions

1. $\left|\frac{3 N+1}{N-1}-3\right|<\varepsilon$, so combining the fractions give $\left|\frac{3 N+1-3 N+3}{N-1}\right|<\varepsilon$. Provided that $N>1$, we can take the absolute value off to get $\frac{4}{N-1}<\varepsilon$, so $\frac{4}{\varepsilon}+1<N$. Since we have found a formula for N, we have proven that it converges.
2. If we let $\varepsilon=\frac{1}{2}$, then we just have to show that $\frac{3 n+1}{n-1}$ is not always within $\frac{1}{2}$ of zero. But $\frac{3 n+1}{n-1}$ is actually NEVER within $\frac{1}{2}$ of zero (try plotting the graph to convince yourself of this).
3. $\left|\ln \left(1+\frac{1}{N}\right)-0\right|<\varepsilon$. When $x>1$, then $\ln (x)$ is positive, so we can take off the absolute values to get $\ln \left(1+\frac{1}{N}\right)<\varepsilon$. Raising e to both sides gives $1+\frac{1}{N}<e^{\varepsilon}$, so $\frac{1}{N}<e^{\varepsilon}-1$. Note that ε is positive, so $e^{\varepsilon}>1$, so $e^{\varepsilon}-1$ is positive. Thus we can divide by it without changing the direction of the inequality. Then we have $\frac{1}{e^{\varepsilon}-1}<N$.
